Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558465

RESUMO

Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.


Assuntos
Prosencéfalo Basal , Lesões Encefálicas Traumáticas , Receptores de Fator de Crescimento Neural , Animais , Feminino , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Aferentes , Degeneração Retrógrada/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
2.
Front Mol Neurosci ; 16: 1147597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305555

RESUMO

Introduction: Recently, the cerebellum has been implicated with non-motor functions, including cognitive and emotional behavior. Anatomical and functional studies demonstrate bidirectional cerebellar connections with brain regions involved in social cognition. Cerebellar developmental abnormalities and injury are often associated with several psychiatric and mental disorders including autism spectrum disorders and anxiety. The cerebellar granule neurons (CGN) are essential for cerebellar function since they provide sensorimotor, proprioceptive, and contextual information to Purkinje cells to modify behavior in different contexts. Therefore, alterations to the CGN population are likely to compromise cerebellar processing and function. Previously we demonstrated that the p75 neurotrophin receptor (p75NTR) was fundamental for the development of the CGN. In the absence of p75NTR, we observed increased proliferation of the granule cell precursors (GCPs), followed by increased GCP migration toward the internal granule layer. The excess granule cells were incorporated into the cerebellar network, inducing alterations in cerebellar circuit processing. Methods: In the present study, we used two conditional mouse lines to specifically delete the expression of p75NTR in CGN. In both mouse lines, deletion of the target gene was under the control of the transcription factor Atoh-1 promotor, however, one of the lines was also tamoxifen-inducible. Results: We observed a loss of p75NTR expression from the GCPs in all cerebellar lobes. Compared to control animals, both mouse lines exhibited a reduced preference for social interactions when presented with a choice to interact with a mouse or an object. Open-field locomotor behavior and operant reward learning were unaffected in both lines. Lack of preference for social novelty and increased anxiety-related behavior was present in mice with constitutive p75NTR deletion; however, these effects were not present in the tamoxifen-inducible mice with p75NTR deletion that more specifically targeted the GCPs. Discussion: Our findings demonstrate that alterations to CGN development by loss of p75NTR alter social behavior, and contribute to the increasing evidence that the cerebellum plays a role in non-motor-related behaviors, including social behavior.

3.
Glia ; 71(10): 2383-2400, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37334743

RESUMO

The precise timing of neural progenitor development and the correct balance between proliferation and differentiation are crucial to generating a functional brain. The number, survival, and differentiation of neural progenitors during postnatal neurogenesis and gliogenesis is a highly regulated process. Postnatally, the majority of brain oligodendrocytes are generated from progenitors residing in the subventricular zone (SVZ), the germinal niche surrounding the lateral ventricles. In this study, we demonstrate that the p75 neurotrophin receptor (p75NTR) is highly expressed by OPCs in the postnatal male and female rat SVZ. Whereas the p75NTR is known to initiate apoptotic signaling after brain injury, it is highly expressed by proliferating progenitors in the SVZ, suggesting that it may have a different function during development. Lack of p75NTR reduced progenitor proliferation and caused premature oligodendrocyte differentiation and maturation both in vitro and in vivo, leading to aberrant early myelin formation. Our data reveal a novel role for p75NTR as a rheostat for oligodendrocyte production and maturation during myelin formation in the postnatal rat brain.


Assuntos
Ventrículos Laterais , Células Precursoras de Oligodendrócitos , Animais , Feminino , Masculino , Ratos , Encéfalo , Diferenciação Celular , Neurogênese/fisiologia , Oligodendroglia/fisiologia , Receptor de Fator de Crescimento Neural
4.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040414

RESUMO

Neuronal migration is one of the fundamental processes during brain development. Several neurodevelopmental disorders can be traced back to dysregulated migration. Although substantial efforts have been placed in identifying molecular signals that stimulate migration, little is known about potential mechanisms that restrict migration. These restrictive mechanisms are essential for proper development since it helps coordinate the timing for each neuronal population to arrive and establish proper connections. Moreover, preventing migration away from a proliferative niche is necessary in maintaining a pool of proliferating cells until the proper number of neuronal progenitors is attained. Here, using mice and rats, we identify an anti-migratory role for the p75 neurotrophin receptor (p75NTR) in cerebellar development. Our results show that granule cell precursors (GCPs) robustly express p75NTR in the external granule layer (EGL) when they are proliferating during postnatal development, however, they do not express p75NTR when they migrate either from the rhombic lip during embryonic development or from the EGL during postnatal development. We show that p75NTR prevented GCP migration by maintaining elevated levels of active RhoA. The expression of p75NTR was sufficient to prevent the migration of the granule cells even in the presence of BDNF (brain-derived neurotrophic factor), a well-established chemotactic signal for this cell population. Our findings suggest that the expression of p75NTR might be a critical signal that stops and maintains the GCPs in the proliferative niche of the EGL, by promoting the clonal expansion of cerebellar granule neurons.


The human brain contains billions of neurons that form vast networks to relay information around the brain and to the rest of the body. The numbers and locations of neurons, and the connections between them, affect how the brain works, so the body carefully controls how, where and when neurons form. Most of the neurons in the brain arise before we are born from groups of supporting cells known as neuronal precursors. Often, these cells must migrate from one place to another to make neurons in the correction location. For example, neuronal precursors in an area of the embryo brain, called the rhombic lip, produce granule cells ­ a type of neuron found in the cerebellum, a region of the adult brain that controls our ability to move around. Before making the neurons, the precursor cells first have to migrate out of the rhombic lip into a neighboring area. Previous studies indicate that a protein known as p75NTR may help to control the ability of brain cells to migrate, but its precise role remained unclear. To address this question, Zanin and Friedman investigated the role of p75NTR in the migration of granule cell precursors in mice and rats. The experiments found that in animals lacking this protein, the granule cell precursors began to migrate out of the rhombic lip earlier than in normal animals, resulting in excessive numbers of granule cells in the adult cerebellum, which can affect the normal development of an animal. The p75NTR protein appeared to prevent the cells from migrating by activating another protein called RhoA. Understanding how the body controls when neuronal precursors and other brain cells migrate helps us to understand how the brain develops in healthy individuals and certain neurological disorders, including autism. The next step is to find out whether p75NTR also plays a similar role in the human brain.


Assuntos
Cerebelo , Receptor de Fator de Crescimento Neural , Animais , Encéfalo/metabolismo , Movimento Celular/fisiologia , Cerebelo/fisiologia , Camundongos , Neurônios/fisiologia , Ratos , Receptor de Fator de Crescimento Neural/metabolismo
5.
ASN Neuro ; 12: 1759091420930865, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32493127

RESUMO

The p75 neurotrophin receptor (p75NTR) can regulate multiple cellular functions including proliferation, survival, and apoptotic cell death. The p75NTR is widely expressed in the developing brain and is downregulated as the nervous system matures, with only a few neuronal subpopulations retaining expression into adulthood. However, p75NTR expression is induced following damage to the adult brain, including after traumatic brain injury, which is a leading cause of mortality and disability worldwide. A major consequence of traumatic brain injury is the progressive neuronal loss that continues secondary to the initial trauma, which ultimately contributes to cognitive decline. Understanding mechanisms governing this progressive neuronal death is key to developing targeted therapeutic strategies to provide neuroprotection and salvage cognitive function. In this study, we demonstrate that a cortical impact injury to the sensorimotor cortex elicits p75NTR expression in apoptotic neurons in the injury penumbra, confirming previous studies. To establish whether preventing p75NTR induction or blocking the ligands would reduce the extent of secondary neuronal cell death, we used a noninvasive intranasal strategy to deliver either siRNA to block the induction of p75NTR, or function-blocking antibodies to the ligands pro-nerve growth factor and pro-brain-derived neurotrophic factor. We demonstrate that either preventing the induction of p75NTR or blocking the proneurotrophin ligands provides neuroprotection and preserves sensorimotor function.


Assuntos
Apoptose/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/biossíntese , Administração Intranasal/métodos , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Morte Celular/fisiologia , Técnicas de Silenciamento de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , RNA Interferente Pequeno/administração & dosagem , Receptores de Fator de Crescimento Neural/antagonistas & inibidores
6.
Front Cell Neurosci ; 13: 485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736712

RESUMO

Neurotrophins activate Trk receptor signaling to support neuronal survival and many aspects of neuronal function. Early studies demonstrated that TrkA formed a complex with the p75 neurotrophin receptor (p75 NTR ), which increased the affinity and selectivity of NGF binding, however, whether interaction of p75 NTR with other Trk receptors performs a similar function to enhance ligand binding has not been demonstrated. We investigated the interaction of TrkB with full length p75 NTR in hippocampal neurons in response to BDNF and found that the association of these receptors occurs after ligand binding and requires phosphorylation of TrkB, indicating that formation of this receptor complex was not necessary for ligand binding. Moreover, the interaction of these receptors required internalization and localization to early endosomes. We found that association of TrkB with p75 NTR was necessary for optimal downstream signaling of the PI3K-Akt pathway, but not the Erk pathway, in hippocampal neurons. The absence of p75 NTR impaired the ability of BDNF to rescue hippocampal neurons in a trophic deprivation model, suggesting that p75 NTR facilitates the ability of TrkB to activate specific pathways to promote neuronal survival.

7.
J Neurosci ; 39(46): 9119-9129, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31582529

RESUMO

Development of brain circuitry requires precise regulation and timing of proliferation and differentiation of neural progenitor cells. The p75 neurotrophin receptor (p75NTR) is highly expressed in the proliferating granule cell precursors (GCPs) during development of the cerebellum. In a previous paper, we showed that proNT3 promoted GCP cell cycle exit via p75NTR. Here we used genetically modified rats and mice of both sexes to show that p75NTR regulates the duration of the GCP cell cycle, requiring activation of RhoA. Rats and mice lacking p75NTR have dysregulated GCP proliferation, with deleterious effects on cerebellar circuit development and behavioral consequences persisting into adulthood. In the absence of p75NTR, the GCP cell cycle is accelerated, leading to delayed cell cycle exit, prolonged GCP proliferation, increased glutamatergic input to Purkinje cells, and a deficit in delay eyeblink conditioning, a cerebellum-dependent form of learning. These results demonstrate the necessity of appropriate developmental timing of the cell cycle for establishment of proper connectivity and associated behavior.SIGNIFICANCE STATEMENT The cerebellum has been shown to be involved in numerous behaviors in addition to its classic association with motor function. Cerebellar function is disrupted in a variety of psychiatric disorders, including those on the autism spectrum. Here we show that the p75 neurotrophin receptor, which is abundantly expressed in the proliferating cerebellar granule cell progenitors, regulates the cell cycle of these progenitors. In the absence of this receptor, the cell cycle is dysregulated, leading to excessive progenitor proliferation, which alters the balance of inputs to Purkinje cells, disrupting the circuitry and leading to functional deficits that persist into adulthood.


Assuntos
Ciclo Celular/fisiologia , Cerebelo/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Animais , Proliferação de Células , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Ratos Transgênicos , Receptores de Fatores de Crescimento
8.
Mol Cell Neurosci ; 99: 103395, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31422108

RESUMO

BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72 h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Receptor de Fator de Crescimento Neural/genética , Transdução de Sinais , Regulação para Cima
9.
Mol Cell Neurosci ; 88: 240-248, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29444457

RESUMO

Astrocytes are a heterogeneous population of glial cells that react to brain insults through a process referred to as astrogliosis. Reactive astrocytes are characterized by an increase in proliferation, size, migration to the injured zone and release of a plethora of chemical mediators such as NGF and BDNF. The aim of this study was to determine whether there are brain region-associated responses of astrocytes to an injury and to the neurotrophins NGF and BDNF. We used the scratch injury model to study the closure of a wound inflicted on a monolayer of astrocytes obtained from cortex, hippocampus or striatum. Our results indicate that the response of astrocytes to a mechanical lesion differ according to brain regions. Astrocytes from the striatum proliferate and repopulate the injury site more rapidly than astrocytes from cortex or hippocampus. We found that the scratch injury induced the upregulation of neurotrophin receptor p75NTR and TrkB.t in astrocytes from all brain regions studied. When astrocytes from all regions were treated with NGF, the neurotrophin induced migration of the astrocytes (assessed in Boyden chambers) and induced wound closure but did not affect proliferation. In contrast, BDNF induced wound closure but only in astrocytes from striatum. Our overall findings show the heterogeneity in astrocyte functions based on their brain region of origin, and how this functional diversity may determine their responses to an injury and to neurotrophins.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/lesões , Córtex Cerebral/metabolismo , Gliose/metabolismo , Hipocampo/lesões , Hipocampo/metabolismo , Neuroglia/metabolismo , Ratos Wistar
10.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29349290

RESUMO

Neurotrophins play critical roles in the survival, maintenance and death of neurons. In particular, proneurotrophins have been shown to mediate cell death following brain injury induced by status epilepticus (SE) in rats. Previous studies have shown that pilocarpine-induced seizures lead to increased levels of proNGF, which binds to the p75NTR-sortilin receptor complex to elicit apoptosis. A screen to identify compounds that block proNGF binding and uptake into cells expressing p75 and sortilin identified lithium citrate as a potential inhibitor of proNGF and p75NTR-mediated cell death. In this study, we demonstrate that low, submicromolar doses of lithium citrate effectively inhibited proNGF-induced cell death in cultured neurons and protected hippocampal neurons following pilocarpine-induced SE in vivo. We analyzed specific mechanisms by which lithium citrate afforded neuroprotection and determined that lithium citrate prevented the association and internalization of the p75NTR-sortilin receptor complex. Our results demonstrate a novel mechanism by which low-dose treatments of lithium citrate are effective in attenuating p75NTR-mediated cell death in vitro and in vivo.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Morte Celular/efeitos dos fármacos , Citratos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Morte Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Pilocarpina , Ratos , Células Sf9 , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
11.
Elife ; 52016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27434667

RESUMO

Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.


Assuntos
Proliferação de Células , Cerebelo/embriologia , Neurônios/fisiologia , Neurotrofina 3/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Camundongos , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso , Ratos , Receptores de Fatores de Crescimento
12.
ASN Neuro ; 6(5)2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290065

RESUMO

ProNGF and p75(NTR) are upregulated and induce cell death following status epilepticus (SE) in rats. However, less is known about the proneurotrophin response to SE in mice, a more genetically tractable species where mechanisms can be more readily dissected. We evaluated the temporal- and cell-specific induction of the proneurotrophins and their receptors, including p75(NTR), sortilin, and sorCS2, following mild SE induced with kainic acid (KA) or severe SE induced by pilocarpine. We found that mature NGF, p75(NTR), and proBDNF were upregulated following SE, while proNGF was not altered, indicating potential mechanistic differences between rats and mice. ProBDNF was localized to mossy fibers and microglia following SE. p75(NTR) was transiently induced primarily in axons and axon terminals following SE, as well as in neuron and astrocyte cell bodies. ProBDNF and p75(NTR) increased independently of cell death and their localization was different depending on the severity of SE. We also examined the expression of proneurotrophin co-receptors, sortilin and sorCS2. Following severe SE, sorCS2, but not sortilin, was elevated in neurons and astrocytes. These data indicate that important differences exist between rat and mouse in the proneurotrophin response following SE. Moreover, the proBDNF and p75(NTR) increase after seizures in the absence of significant cell death suggests that proneurotrophin signaling may play other roles following SE.


Assuntos
Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Estado Epiléptico/metabolismo , Regulação para Cima/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Fluoresceínas , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Transgênicos , Agonistas Muscarínicos/toxicidade , Fator de Crescimento Neural/genética , Proteínas do Tecido Nervoso/metabolismo , Pilocarpina/toxicidade , Precursores de Proteínas/genética , Receptor de Fator de Crescimento Neural/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
13.
J Neurosci ; 32(2): 703-12, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22238106

RESUMO

The neurotrophin nerve growth factor (NGF) regulates neuronal growth, differentiation, and survival during development. However, the precursor of NGF, proNGF, is a potent apoptotic ligand for the p75 neurotrophin receptor (p75(NTR))-sortilin complex. The mechanisms that regulate cleavage of proNGF, therefore, are critical determinants of whether this factor promotes neuronal survival or death. In this study, we demonstrate that, following kainic acid-induced seizures, the proNGF processing enzyme matrix metalloproteinase 7 (MMP-7) and its inhibitor TIMP-1 (tissue inhibitor of matrix metalloproteinase 1) are regulated in a manner that prevents proneurotrophin cleavage and leads to increased proNGF in the extracellular milieu. Furthermore, we demonstrate both in vitro and in vivo that exogenous MMP-7 enhances proNGF cleavage and provides neuroprotection following kainic acid treatment. These data demonstrate that increased extracellular proNGF levels following seizures are stabilized by altered MMP-7 enzymatic activity, leading to increased neuronal death via activation of p75(NTR).


Assuntos
Epilepsia/fisiopatologia , Metaloproteinase 7 da Matriz/fisiologia , Degeneração Neural/tratamento farmacológico , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/metabolismo , Precursores de Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/complicações , Ácido Caínico/toxicidade , Masculino , Degeneração Neural/etiologia , Degeneração Neural/prevenção & controle , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
14.
Brain Res ; 1436: 20-33, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22197703

RESUMO

In recent years, microRNAs or miRNAs have been proposed to target neuronal mRNAs localized near the synapse, exerting a pivotal role in modulating local protein synthesis, and presumably affecting adaptive mechanisms such as synaptic plasticity. In the present study we have characterized the distribution of miRNAs in five regions of the adult mammalian brain and compared the relative abundance between total fractions and purified synaptoneurosomes (SN), using three different methodologies. The results show selective enrichment or depletion of some miRNAs when comparing total versus SN fractions. These miRNAs were different for each brain region explored. Changes in distribution could not be attributed to simple diffusion or to a targeting sequence inside the miRNAs. In silico analysis suggest that the differences in distribution may be related to the preferential concentration of synaptically localized mRNA targeted by the miRNAs. These results favor a model of co-transport of the miRNA-mRNA complex to the synapse, although further studies are required to validate this hypothesis. Using an in vivo model for increasing excitatory activity in the cortex and the hippocampus indicates that the distribution of some miRNAs can be modulated by enhanced neuronal (epileptogenic) activity. All these results demonstrate the dynamic modulation in the local distribution of miRNAs from the adult brain, which may play key roles in controlling localized protein synthesis at the synapse.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/análise , Convulsões/metabolismo , Animais , Hipocampo/metabolismo , Ácido Caínico , MicroRNAs/metabolismo , Densidade Pós-Sináptica/metabolismo , Prosencéfalo/metabolismo , Ratos , Convulsões/induzido quimicamente , Sinapses
15.
Dev Neurobiol ; 72(6): 766-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21954122

RESUMO

Neurotrophins can influence multiple cellular functions depending on the cellular context and the specific receptors they interact with. These neurotrophic factors have been extensively studied for their ability to support neuronal survival via Trk receptors and to induce apoptosis via the p75(NTR). However, the p75(NTR) is also detected on cell populations that do not undergo apoptosis in response to neurotrophins. In particular, the authors have detected p75(NTR) expression on astrocytes during development and after seizure-induced injury. In this study, the authors investigated the role of Nerve growth factor (NGF) in regulating astrocyte proliferation and in influencing specific aspects of the cell cycle. The authors have demonstrated that NGF prevents the induction of cyclins and their association with specific cyclin-dependent kinases, and thereby prevents progression through the G1 phase of the cell cycle. Since the authors have previously shown that p75(NTR) but not TrkA, is expressed in astrocytes, these data suggest that activation of p75(NTR) promotes withdrawal of astrocytes from the cell cycle, which may have important consequences during development and after injury.


Assuntos
Astrócitos/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Astrócitos/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/metabolismo
16.
J Neurosci ; 31(49): 18048-59, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159118

RESUMO

In the CNS, interleukin-1ß (IL-1ß) is synthesized and released during injury, infection, and disease, mediating inflammatory responses. However, IL-1ß is also present in the brain under physiological conditions, and can influence hippocampal neuronal function. Several cell-specific IL-1-mediated signaling pathways and functions have been identified in neurons and astrocytes, but their mechanisms have not been fully defined. In astrocytes, IL-1ß induced both the p38 MAPK and NF-κB (nuclear factor κB) pathways regulating inflammatory responses, however in hippocampal neurons IL-1ß activated p38 but not NF-κB. Additionally, IL-1ß induced Src phosphorylation at 0.01 ng/ml in hippocampal neurons, a dose 1000-fold lower than that used to stimulate inflammatory responses. IL-1 signaling requires the type 1 IL-1 receptor and the IL-1 receptor accessory protein (IL-1RAcP) as a receptor partner. We previously reported a novel isoform of the IL-1RAcP, IL-1RAcPb, found exclusively in CNS neurons. In this study, we demonstrate that AcPb specifically mediates IL-1ß activation of p-Src and potentiation of NMDA-induced calcium influx in mouse hippocampal neurons in a dose-dependent manner. Mice lacking the AcPb, but retaining the AcP, isoform were deficient in IL-1ß regulation of p-Src in neurons. AcPb also played a modulatory role in the activation of p38 MAPK, but had no effect on NF-κB signaling. The restricted expression of AcPb in CNS neurons, therefore, governs specific neuronal signaling and functional responses to IL-1ß.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Interleucina-1beta/farmacologia , Neurônios/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Imunoprecipitação , Proteína Acessória do Receptor de Interleucina-1/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Gravidez , Isoformas de Proteínas/deficiência , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Neurosci ; 30(46): 15608-15, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21084616

RESUMO

Proneurotrophins and mature neurotrophins activate different signaling pathways with distinct effects on their target cells: proneurotrophins can induce apoptotic signaling via p75(NTR), whereas mature neurotrophins activate Trk receptors to influence survival and differentiation. Here, we demonstrate that the PTEN (phosphatase and tensin homolog deleted on chromosome 10) phosphatase represents a novel switch between the survival and apoptotic signaling pathways in rat CNS neurons. Simultaneous activation of p75(NTR) by proNGF and TrkB signaling by BDNF elicited apoptosis despite TrkB phosphorylation. Apoptosis induced by p75(NTR) required suppression of TrkB-induced phosphoinositide-3 kinase signaling, mediated by induction of PTEN, for apoptosis to proceed. Inhibition of PTEN restored the ability of BDNF to phosphorylate Akt and protect cultured basal forebrain neurons from proNGF-induced death. In vivo, inhibition or knockdown of PTEN after pilocarpine-induced seizures protected CNS neurons from p75(NTR)-mediated death, demonstrating that PTEN is a crucial factor mediating the balance between p75(NTR)-induced apoptotic signaling and Trk-mediated survival signaling in brain neurons.


Assuntos
Encéfalo/fisiologia , Fatores de Crescimento Neural/fisiologia , PTEN Fosfo-Hidrolase/biossíntese , Precursores de Proteínas/fisiologia , Receptor trkB/antagonistas & inibidores , Receptor trkB/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Transdução de Sinais/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Masculino , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento
18.
Neuroscientist ; 16(3): 244-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20360602

RESUMO

Neurons respond to numerous factors in their environment that influence their survival and function during development and in the mature brain. Among these factors, the neurotrophins have been shown to support neuronal survival and function, acting primarily through the Trk family of receptor tyrosine kinases. However, recent studies have established that the uncleaved neurotrophin precursors, the proneurotrophins, can be secreted and induce apoptosis via the p75 neurotrophin receptor, suggesting that the balance of secreted mature and proneurotrophins has a critical impact on neuronal survival or death. Epileptic seizures elicit increases in both proneurotrophin secretion and p75(NTR) expression, shifting the balance of these factors toward signaling cell death. This review will discuss the evidence that this ligand-receptor system plays an important role in neuronal loss following seizures.


Assuntos
Apoptose/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Epilepsia/metabolismo , Epilepsia/patologia , Fatores de Crescimento Neural/fisiologia , Neurônios/patologia , Precursores de Proteínas/fisiologia , Animais , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Humanos , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo
19.
J Cell Sci ; 122(Pt 18): 3351-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19706676

RESUMO

Dimerization is recognized as a crucial step in the activation of many plasma membrane receptors. However, a growing number of receptors pre-exist as dimers in the absence of ligand, indicating that, although necessary, dimerization is not always sufficient for signaling. The p75 neurotrophin receptor (p75(NTR)) forms disulfide-linked dimers at the cell surface independently of ligand binding through Cys257 in its transmembrane domain. Here, we show that crosslinking of p75(NTR) dimers by cysteine-scanning mutagenesis results in constitutive, ligand-independent activity in several pathways that are normally engaged upon neurotrophin stimulation of native receptors. The activity profiles of different disulfide-crosslinked p75(NTR) mutants were similar but not identical, suggesting that different configurations of p75(NTR) dimers might be endowed with different functions. Interestingly, crosslinked p75(NTR) mutants did not mimic the effects of the myelin inhibitors Nogo or MAG, suggesting the existence of ligand-specific activation mechanisms. Together, these results support a conformational model of p75(NTR) activation by neurotrophins, and reveal a genetic approach to generate gain-of-function receptor variants with distinct functional profiles.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Dissulfetos/metabolismo , Multimerização Proteica , Receptor de Fator de Crescimento Neural/química , Receptor de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Células COS , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ligantes , Dados de Sequência Molecular , Proteínas Mutantes/efeitos dos fármacos , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Fatores de Crescimento Neural/farmacologia , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo
20.
ASN Neuro ; 1(2)2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19570027

RESUMO

The p75NTR (where NTR is neurotrophin receptor) can mediate many distinct cellular functions, including cell survival and apoptosis, axonal growth and cell proliferation, depending on the cellular context. This multifunctional receptor is widely expressed in the CNS (central nervous system) during development, but its expression is restricted in the adult brain. However, p75NTR is induced by a variety of pathophysiological insults, including seizures, lesions and degenerative disease. We have demonstrated previously that p75NTR is induced by seizures in neurons, where it induces apoptosis, and in astrocytes, where it may regulate proliferation. In the present study, we have investigated whether the inflammatory cytokines IL (interleukin)-1ß and TNF-α(tumour necrosis factor-α), that are commonly elevated in these pathological conditions, mediate the regulation of p75NTR in neurons and astrocytes. We have further analysed the signal transduction pathways by which these cytokines induce p75NTR expression in the different cell types, specifically investigating the roles of the NF-κB (nuclear factor κB) and p38 MAPK (mitogen-activated protein kinase) pathways. We have demonstrated that both cytokines regulate p75NTR expression; however, the mechanisms governing this regulation are cytokine- and cell-type specific. The distinct mechanisms of cytokine-mediated p75NTR regulation that we demonstrate in the present study may facilitate therapeutic intervention in regulation of this receptor in a cell-selective manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...